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Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth,
nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode mem-
brane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In
addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the
phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene
families for which initial characterizations have been achieved for individual members, including potassium transporters
and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator pro-
teins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-
like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These
families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies
exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their
further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed

cation transporters and their chromosomal locations.

Transport of metals and alkali cations across plant
plasma and organellar membranes is essential for
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plant growth, development, signal transduction, nu-
trition, and also for use of plants in toxic metal phy-
toremediation. Alkali cation and metal transporters
have been analyzed traditionally in great depth as
models for understanding plant membrane trans-
port. This tradition dates back to the classical studies
of Epstein and colleagues, who analyzed potassium
(K") influx as a model for understanding nutrient
uptake into roots (Epstein et al., 1963). These early
studies suggested that plants utilize at least two
pathways with different kinetics for nutrient uptake.
This was a first glimpse at the complexity of trans-
porters in plants that now, nearly 40 years later, is
fully realized by the analysis of the complete
genomic sequence of the plant Arabidopsis.

The first isolated plant transporter cDNAs were a
phosphate translocator from spinach (Spinacia olera-
cea) chloroplasts (Fliigge et al., 1989), a hexose trans-
porter from Chlorella kessleri (Sauer and Tanner, 1989)
followed by three proton ATPases (Boutry et al.,
1989; Harper et al., 1989; Pardo and Serrano, 1989).
Within 5 years, the use of heterologous expression in
yeast and functional characterization in Xenopus lae-
vis oocytes led to the identification of genes encoding
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a number of physiologically important plant trans-
porters. In the past few years, the number of recog-
nized membrane transporter families and homolo-
gous family members has exploded in large part due
to heterologous complementation screens and se-
quencing of both plant expressed sequence tags
(ESTs) and the Arabidopsis genome. The completion
of the Arabidopsis genome now allows analysis of a
complete set of transporter gene families in a single
plant species.

In the present study, we have analyzed the se-
quences of known Arabidopsis plant cation trans-
porter families, for which individual members have
been previously functionally characterized. The re-
ported analyses represent a starting point for func-
tional genomic studies. Furthermore, our analyses
provide an insight into the evolution of various cat-
ion transporter subfamilies within the genome. In
addition, considering the large number of Arabidop-
sis membrane proteins with no known or presumed
function, we expect that many new cation transport-
ers will be identified in the future.

Uptake of cations into plant cells is driven by ATP-
dependent proton pumps that catalyze H" extrusion
across the plasma membrane. The resulting proton
motive force typically comprises a membrane poten-
tial of about —150 mV, and a pH difference of 2 units
(which contributes another —120 mV to the proton
motive force). Cation uptake can then be powered
both through H" symport and/or as a result of the
negative membrane potential (Maathuis and Sand-
ers, 1994; Schroeder et al., 1994; Hirsch et al., 1998).
The plasma membrane H*-ATPases belong to a large
family of so-called P-type ATPases of which there are
45 members in the Arabidopsis genome (analyzed in
Axelsen and Palmgren, 2001).

Research on K" transport has shown that transport
of an essential cationic nutrient is often mediated by
more than one family of partially redundant trans-
porters. It has been proposed that functionally over-
lapping but structurally distinct transporters could
provide plants with the ability to transport nutrients
under various conditions, including differing ener-
getic conditions, genetic defects, and the presence of
toxic blocking cations (Schroeder et al., 1994). In the
present article, we focus on transporters for plant
nutrients including zinc (Zn*"), iron (Fe, two fami-
lies), K™ (four families), and calcium (Ca>"; two fam-
ilies). Uptake of these nutrients is not only 1mportant
for plant growth, but also for human nutrition. For
example, Fe deficiencies are widespread (Guerinot,
2000a).

Cation transporters also play important roles in
plant signaling. For example, Ca*" and K* channels
are essential for transducing many hormonal and
light signals in plants. Patch clamp studies have pro-
vided direct and “biochemical characterizations”
demonstrating the diverse regulation and Channel
properties of multiple distinct classes of plant Ca®"
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channels. However, it is surprising that the un-
equivocal identification of genes encoding Ca*" in-
flux channels in plants is still lacking. Among can-
didate genes that have been implicated in Ca**
influx are the cyclic nucleotide-gated channel
(CNGC) family (Schuurink et al., 1998; Kohler et al.,
1999; Sunkar et al., 2000), a smgle Arab1d0p51s gene
homologous to Voltage dependent Ca?* channels
(accession no. AF071527) and the wheat (Triticum
aestivum) LCT1 transporter (Clemens et al., 1998).
No LCT1 homologs are found in the Arabidopsis
genome database or in genomes from non-plant
species, indicating the need for genome sequences
of other plant types. Note that LCT1 has repetitive
sequences, which renders genomic sequencing dif-
ficult. Given the physiological complexity and im-
portance of Ca>* channels, genes and gene families
encoding these signaling proteins will hopefully
soon emerge.

Plant transporters also play important roles in
shuttling potentially toxic cations across plant mem-
branes. The cation selectivity filters of plant trans-
porters often allow toxic cations to be transported,
along with cationic nutrients. Powerful genetic ap-
proaches have been developed that allow high-
throughput selection of point mutations that reduce
or block transport of toxic cations, while maintaining
nutrient transport (Rubio et al., 1995; Nakamura et
al., 1997; Ichida et al., 1999; Rogers et al., 2000).
Several of the transporters analyzed in the present
article have been shown to transport toxic cations.
Cadmium, for example, is transported by members of
the Zn-regulated transporter (ZRT) Fe-regulated
transporter (IRT)-like proteins (ZIP), natural
resistance-associated macrophage proteins (NRAMP),
and cation diffusion facilitator (CDF) families that are
analyzed here (Guerinot, 2000b; Thomine et al., 2000;
Persans et al., 2001). In addition, ATP-binding cas-
sette transporters represent a large gene family, with
members contributing to vacuolar sequestration of
glutathione- and phytochelatin-complexed heavy
metals (Rea et al., 1998; Theodoulou, 2000) and a
complete analysis of ATP binding cassette trans-
porter homologs in the Arabidopsis genome will be
completed shortly (P. Rea and R. Sanchez-Fernandez,
personal communication; Sanchez-Ferndndez et al.,
2001). Furthermore, several plant cation transporters
have been reported to mediate transport of sodium
(Na"), which is toxic at high concentrations leading
to salinity stress. Of the transporters analyzed here,
the HKT, KUP/HAK/KT, NHX, and salt overly sen-
sitive (SOS1) transporters have all been shown to
mediate Na™ transport and additional Na™ perme-
able transporters are certain to emerge. Genetic and
physiological analyses will be needed to determine
the functions and relative contributions of different
transporters to nutrient and toxic metal transport in
plants.
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Computer-assisted analyses of the completed Ara-
bidopsis genome sequence will be invaluable for as-
signing members to gene families (Ward, 2001) and
several initial web sites displaying information on
predicted Arabidopsis transporter families have been
created. Accession nos. of Arabidopsis transporters
belonging to known families are shown at http: //www.
biology.ucsd.edu/~ipaulsen/transport/. The Arabi-
dopsis Membrane Protein Library (http://www.cbs.
umn.edu/arabidopsis/) displays information for each
predicted membrane protein, including transporters,
clustered into families based on homology. A PlantsT
database has been assembled that will provide the
results from functional genomic analyses of all Arabi-
dopsis transporters (http://plantst.sdsc.edu/).

The presented analyses provide the first genome-
wide study and discussion of important cation trans-
porters in a plant, and will serve as a reference for
future functional dissection of these membrane pro-
teins. Furthermore, the presented phylogenetic anal-
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yses should aid in understanding the evolution of
plant cation transport proteins.

RESULTS AND DISCUSSION
Potassium Transporter Family

The alkali metal potassium (K") is a major plant
macronutrient and K" is the most abundant cation in
plants. Potassium transporters are required for the
accumulation of potassium ions (K") from soil and
for their distribution throughout diverse plant tis-
sues, for root and shoot growth, tropisms, cell expan-
sion, enzyme homeostasis, salinity stress, stomatal
movements, and osmoregulation. Therefore, it is not
surprising to find a large number of genes in Arabi-
dopsis encoding K" transporters, which fall into ei-
ther of four to five families (Fig. 1): two distinct K*
channel families (Fig. 2; 15 genes), Trk/HKT trans-
porters (one gene), KUP/HAK/KT transporters (Fig.
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Figure 1. Overview of Arabidopsis K* transporters. A tree of all K* transporters from Arabidopsis has five major branches:
a, KUP/HAK/KT transporters (13 genes); b, Trk/HKT transporters (Na™ transporter; one gene); ¢, KCO (2P/4TM) K* channels
(six genes); d, Shaker-type (1P/6TM) K™ channels (nine genes); and e, K*/H" antiporter homologs (six genes). Predicted
membrane topologies for each branch are shown. The apparent absence of K™ channels of the 2P/8TM family is remarkable
as is the diversity in the AtKUP/HAK/KT transporters. Proteins for which a complete cDNA sequence is available are
indicated by bold letters and lines. Arabidopsis Genome Initiative (AGI) genome codes are given except for AtKUP3 =
AtKUP4, AtHAKS5, AtHKT1, GORK, KAT2, and AKT2 (GenBank accession nos.) because of errors in the sequences predicted
by AGI. Programs used were HMMTOP (Tusnady and Simon, 1998) for topology predictions of the KEA and AtKUP/HAK/KT
families, ClustalX (Thompson et al., 1997) for alignments, and graphical output produced by Treeview (Page, 1996). Values

indicate the number of times of 1,000 bootstraps that each branch topology was found during bootstrap analysis.
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Figure 2. Phylogenetic tree of Arabidopsis K™ channels. A non-rooted tree reflects the structural and functional properties
of Arabidopsis K channels. The two major branches are the 2P/4TM-type and the TP/6TM (Shaker)-type channels, as
depicted by the sketches. For KAT1 the proposed topology has been confirmed experimentally (Uozumi et al., 1998). The
1P/6TM (Shaker-type) channels are further subdivided into the depolarization-activated SKOR and GORK and the KATs and
AKTs. All the TP/6TM channels possess a putative cyclic nucleotide-binding site (CNB), and AKT channels also have an
ankyrin repeat consensus site (AR; see sketches). P-loops are labeled with asterisks. Proteins for which a complete cDNA
sequence is available are indicated by bold letters and lines. Programs used were pfscan (http://www.isrec.isb-sib.ch/
software/PFSCAN  form.html) for motif searches, ClustalX (Thompson et al., 1997) for alignments, and Treeview (Page,
1996) for graphical output. Values indicate the number of times (in percent) that each branch topology was found during

bootstrap analysis.

3; 13 genes), and K" /H" antiporter homologs (six
genes). K" channels are perhaps the best understood
transporter family in plants in terms of gating, sec-
ond messenger regulation, transport properties, and
predicted functions in different plant cells and mem-
branes. However, relatively little is known about the
physiology of the K" permeases and nothing at all
about the K™ /H™ antiporter homologs.

K™ Channels

Analysis and classification of K* channel genes has
been advanced by patch clamp studies characterizing
their properties in plant cells (for review, see Schroe-
der et al., 1994; Maathuis et al., 1997), by functional
characterization of K* channel-encoding genes, and

Plant Physiol. Vol. 126, 2001

by the elucidation of a K* channel structure (Doyle et
al., 1998). The selectivity for K* is structurally de-
fined by four highly conserved pore-forming (P-)
loops on the outer surface of the channel, each P-loop
being embedded between two transmembrane (TM)
domains. The functional channel is either a tetramer
of a-subunits with one P-loop per subunit (Doyle et
al., 1998) or possibly a dimer of a-subunits carrying
two P-loops (the “two-pore” K™ channels; Goldstein
et al., 1998; see insets in Fig. 2). Furthermore,
a-subunits differ in the number of TM domains, with
either two, four, six, or eight (Goldstein et al., 1998).
K™ channel families thus can be categorized by the
numbers of P-loops and TM domains per monomer.
Typical examples are the Shaker-type 1P/6TM (Tem-
pel et al., 1987), the 1P/2TM K" channels (Suzuki et
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Figure 3. Phylogenetic tree of Arabidopsis KUP/HAK/KT (POT) trans-
porters. Proteins for which the complete cDNA has been sequenced
are printed in bold and are marked with bold lines. We are using the
name AtKUP/HAK/KT except for four cases with conflicting numbers:
The names AtKT5 (Quintero and Blatt, 1997) and AtHAKS5 (Rubio et
al., 2000) have been given to different genes, whereas AtKUP3 (Kim
etal., 1998) and AtKT4 (Quintero and Blatt, 1997) have been used for
the same gene, and so were AtKUP4 and AtKT3. Furthermore, At-
KUP4 = AtKT3 corresponds to the TRHT gene (Rigas et al., 2001).
Programs used were ClustalX (Thompson et al., 1997) for alignments
and Treeview (Page, 1996) for graphical output. Values indicate the
number of times (in percent) that each branch topology was found
during bootstrap analysis.

al., 1994), the ORK-like 2P/4TM (Goldstein et al.,
1996), and the Tok-like 2P/8TM (Ketchum et al.,
1995; see insets in Fig. 2: 1P/6TM and 2P/4TM).
The first K" channels cloned from Arabidopsis
were KAT1 (Anderson et al., 1992) and AKT1 (Sen-
tenac et al., 1992). KAT1 and AKT1 have a 1P/6TM
structure (Shaker type; Fig. 2). KAT1 was function-
ally characterized by heterologous expression in X.
laevis oocytes (Schachtman et al., 1992). In contrast to
the depolarization-activated Shaker channels, KAT1
and AKT1 were found to be activated by hyper-
polarization (“inward-rectifying;” Schachtman et al.,
1992; Bertl et al., 1994), with properties similar to the
K™, channels described in guard cells (Schroeder et
al., 1987) and other cell types. KAT1 and AKT1 have
been shown to be expressed in the plasma membrane
of plant cells (Ichida et al., 1997; Bei and Luan, 1998;
Hirsch et al., 1998). Disruption of the AKT1 K™ chan-
nel gene causes reduced K" uptake into roots from
micromolar K* concentrations when other K" trans-
porters are blocked by ammonium (Hirsch et al.,
1998). In X. laevis oocytes, KAT and AKT K* channels
have been reported to form hetero-oligomers, e.g.
AKT1/KAT1 (Dreyer et al, 1997), AKT2/KAT1
(Baizabal-Aguirre et al., 1999), or KAT1/KAT2 (Pilot
et al., 2001). However, no AKT1/KAT1 hetero-
oligomers were detected when the two channel genes
were co-expressed in insect cells (Urbach et al., 2000).
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A second class of Arabidopsis Shaker-like (1P/
6TM) K" channels consists of SKOR (Gaymard et al.,
1998) and GORK (Ache et al., 2000). These channels
are depolarization activated (“outward-rectifying”).
Outward-rectifying K™ channels in plant cells have
been proposed to mediate long-term K" efflux and
membrane potential regulation (Schroeder et al.,
1994). SKOR is expressed in root stelar tissues and is
thought to mediate K* release into the xylem sap
(Gaymard et al., 1998). GORK is expressed in guard
cells and predicted to mediate K", currents during
stomatal closure (Ache et al., 2000). All of the Arabi-
dopsis Shaker-type K* channels possess a putative
cyclic nucleotide-binding site (see Table I). KAT1-
mediated K* currents were shown to be modulated
by c¢cGMP in excised patches of X. laevis oocytes
(Hoshi, 1995), which might be related to this consen-
sus site.

The outward rectifier KCO1 from Arabidopsis was
the first member of the “two-pore” K" channel su-
perfamily identified from plants (Czempinski et al.,
1997). Having four predicted TM domains KCO1
belongs to the 2P /4TM family (Fig. 2). KCO1 also has
calcium-binding EF hand motifs and was reported to
be activated by elevated cytosolic Ca”>" concentra-
tions when expressed in insect cells (Czempinski et
al., 1997).

Searching the Arabidopsis genome we found 15
genes containing conserved K* channel P-loops,
11 of which are available as full-length cDNA clones
(bold lines in Fig. 2). All predicted proteins belong to
either the 1P/6TM (Shaker-type) or to the 2P/4TM
(ORK-type) family. Other families such as the 1P/
2TM or the 2P/8TM channels appear to be absent in
Arabidopsis. A non-rooted phylogenetic tree of all 15
proteins reveals two major branches: the 1P/6TM K*
channels and the 2P/4TM K™ channels (Fig. 2). Thus,
the channels have segregated according to the num-
ber of their P-loops. The only exception is KCO3,
which groups to the 2P/4TM K" channels based on
sequence similarity (Fig. 2) as well as gene structure
(Table I), but has only one P-loop. Whether KCO3
encodes a functional K™ channel remains to be inves-
tigated. The 1P/6TM (Shaker-type) channels are
again subdivided into two branches. The first con-
sists of GORK and SKOR, whereas the second har-
bors AKTs and KATs (Fig. 2). According to previous
conventions (Sentenac et al., 1992; Cao et al., 1995) we
are using the name AKT for all proteins in the second
branch with an ankyrin binding motif, and KAT for
those lacking ankyrin domains (Table I). The phylo-
genetic tree of Arabidopsis K™ channels reflects their
structural and functional characteristics. The major
boundary is that between the “two-pore” KCOs and
the “single-pore” channels; and the latter branch ap-
pears to be subdivided into the AKTs and KATs for
which several have been demonstrated to show en-
hanced open probability upon hyperpolarization,
and the depolarization-activated SKOR and GORK.

Plant Physiol. Vol. 126, 2001
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Table I. Arabidopsis K™ channels

The superfamily of Arabidopsis K* channels, their AGI genome codes and GenBank accession nos., other names found in GenBank, protein
consensus motifs, and no. of introns (in parentheses if no full-length cDNA sequence is available). Sequences previously named AKT4 and AtKC1
in GenBank are here named to KAT3 due to the absence of an ankyrin repeat motif. Two sequences, both previously named KCO, here are named
KCOT1 and KCO2. AKT3 is a truncated but otherwise an identical version of AKT2 (Lacombe et al., 2000). Motif searches were performed with
pfscan (http://www.isrec.isb-sib.ch/software/PFSCAN_form.html) against the PROSITE (Hofmann et al., 1999) and Pfam databases (Bateman et

al., 2000). P, Pore loop; AR, ankyrin repeat; EF, EF-hand motif.

AGI Genome GenBank

Other Predicted

Name Codes Accession No. Names Topography Motifs Introns
AKT1 At2g26650 AAB95299 - 1P/6TM CNB, AR 10
AKT2 At4g22200 AAA97865 AKT3 1P/6TM CNB, AR 9
AKT5 At4g32500 CAB79967 - 1P/6TM CNB, AR 11
AKT6 At2g25600 AAD31377 - 1P/6TM CNB, AR (11)
KAT1 At5g46240 AAA32824 - 1P/6TM CNB 8
KAT2 At4g18290 CAA16801 - 1P/6TM CNB (10)
KAT3 At4g32650 CAB05669 AKT4, KC1 1P/6TM CNB 12
SKOR At3g02850 CAAT11280 - 1P/6TM CNB, AR 10
GORK At5g37500 AAF26975 - 1P/6TM CNB, AR 11
KCO1 At5g55630 BAB09230 KCO 2P/4TM EF 1
KCO2 At5g46370 BAB11092 KCO 2P/4TM EF 1
KCO3 At5g46360 BAB11091 - TP/ATM (2) EF 1
KCO4 At1g02510 AAG10638 - 2P/4TM - (1)
KCO5 At4g01840 CAB80677 - 2P/4ATM - 1
KCO6 At4g18160 CAB53657 - 2P/4TM EF (1)

Trk/HKT Transporters

Trk/HKT transporters are reminiscent of K* chan-
nels in that they possess in a single polypeptide chain
four domains resembling P-loops (see inset in Fig. 1;
Durell and Guy, 1999). These P-loop-like domains are
only weakly conserved to K" channel P loops. The
high-affinity K" transporters Trk1 (Gaber et al., 1988)
and Trk2 (Ramos et al., 1994) from yeast share 49%
similarity on the level of amino acids with each other,
and 17% and 28%, respectively, with HKT1 from
wheat (Schachtman and Schroeder, 1994). Wheat
HKT1 was shown to function as a high-affinity
Na* /K™ cotransporter when expressed in yeast and
in X. laevis oocytes (Rubio et al., 1995), which corre-
lates to high-affinity Na*-coupled K* uptake found
in aquatic plants (Maathuis et al., 1996). In wheat,
Na" /K" cotransport is likely to contribute a minor
portion to K* uptake into roots.

Ion selectivity mutants in HKT1 were genetically
selected and showed reduced Na™ uptake. These
mutants carried point mutations in predicted P-loop-
like domains of HKT1 (Rubio et al., 1995, 1999). This
finding supports the structural model suggesting
that Trk/HKT transporters have cation selectivity
filter P-loops that are related to K* channels.

The Trk/HKT family is represented by a single
member in Arabidopsis, AtHKT1 (Fig. 1). It is inter-
esting that AtHKT1 does not transport K" but Na*
when expressed in yeast and in X. lgevis oocytes
(Uozumi et al., 2000). Therefore, AtHKT1 might func-
tion in Na™ transport in Arabidopsis, and plant Trk/
HKT genes have been proposed to contribute to Na™®
transport and sensitivity in plants (Rubio et al., 1995;
Golldack et al., 1997; Uozumi et al., 2000).

Plant Physiol. Vol. 126, 2001

KUP/HAK/KT Transporters

Bacterial K" uptake permeases named KUPs
(Schleyer and Bakker, 1993) and fungal high-affinity
K" transporters named HAKs (Banuelos et al., 1995)
form an additional family of K transporters that was
identified independently by several laboratories in
plants. The plant genes were named AtKT (Quintero
and Blatt, 1997), AtHAK (Santa-Maria et al., 1997
Rubio et al., 2000), or AtKUP (Fu and Luan, 1998; Kim
et al., 1998). Here, we name the Arabidopsis mem-
bers of this transporter family AtKUP/HAK/KT (un-
less conflicting GenBank-deposited gene nos. would
cause ambiguity; see Fig. 3). The transporters alter-
natively could be named AtPOT1 through AtPOT13
(potassium transporter) using the corresponding
numbering of the published names shown in Figure
3 (special cases: AtKT3/AtKUP4/TRH1 named
AtPOT3/TRH1; AtKT4/AtKUP3 named AtPOT4;
AtHAKS5 named AtPOT5; and AtKT5/KUP5 named
AtPOT13). The 13 AtKUP/HAK/KTs form the tight-
est and most distinct branch in the phylogenetic tree of
Arabidopsis K" transporters (Figs. 1 and 3), reflecting
the high degree of similarity within those genes. For
instance, AtKUP/HAK/KT10 (AtPOT10) and At-
KUP/HAK/KT11 (AtPOT11) share 89% homology at
amino acid level (Fig. 3). There appear to be no major
subfamily branches within the AtKUP/HAK/KTs
(Fig. 3). However, prediction of coding sequences is
dependent on full-length cDNA sequences, which are
only available for AtKUP/HAK/KT1 (AtPOT1), AtKUP/
HAK/KT2 (AtPOT2), AtKT3 = AtKUP4 (ATPOT3/
TRH1), AtKT4 = AtKUP3 (AtPOT4), and AtHAKS (At-
POT5; bold lines in Fig. 3). For the remaining
transporters, amino acid sequences were predicted
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based on partial cDNA sequences and gene structure
analysis programs. These sequences might contain er-
rors, because the programs tested (Grail, GeneFinder,
and NetGene2) did not accurately predict the splicing
of known AtKUP/HAK/KT open reading frames
(ORFs).

Knowledge on the function of KUP/HAK/KTs re-
mains limited. K* transport was experimentally
demonstrated for AtKUP/HAK/TK1 (AtPOT1) in
Escherichia coli and transgenic plant cells (Kim et al.,
1998), and for AtKUP/HAK/KT2 (AtPOT2; Quintero
and Blatt, 1997), AtKUP/HAK/KT1 (AtPOT1; Fu and
Luan, 1998), and AtKT3 = AtKUP4 (AtPOT3/TRHI;
Rigas et al., 2001) in yeast. In other reports, AtKUP/
HAK/KT1 did not function in yeast (Quintero and
Blatt, 1997; Kim et al., 1998). It is important that
high-affinity K" transport mediated by the barley
(Hordeum vulgare) homolog HvHAK1 (HvPOT1) in
yeast was blocked by ammonium, which correlates to
block of K* uptake in plants (Santa-Maria et al.,
1997). Given the size of the AtKUP/HAK/TK gene
family it is possible that expression of particular
members is confined to specific tissues, cells, or or-
ganellar membranes, or that they are only expressed
under specific conditions. Expression of AtKT4 =
AtKUP3 (AtPOT4) in roots is induced by K" starva-
tion (Kim et al., 1998). Disruption of another family
member, AtKT3 = AtKUP4 (AtPOT3/TRH1), abol-
ishes root hair elongation, resulting in a “tiny root
hair” (trh1) phenotype, illustrating the importance of
these transporters in development and cell elonga-
tion (Rigas et al., 2001). The semidominant shy3-1
mutation causes a short hypocotyl and small leaves
(Reed et al., 1998), and changes one amino acid in
AtKUP/HAK/KT2 (ATPOT2; J. Reed, personal com-
munication). Null mutations in AtKUP/HAK/KT2 do
not have a short hypocotyl, suggesting that shy3-1 is
an interfering or gain-of-function allele. Determina-
tion of the membrane localization of individual At-
KUP/HAK/KT (AtPOT) transporters will be impor-
tant for determining their physiological functions.

K*/H* Antiporter Homologs

K*/H" antiporters have first been described from
gram-negative bacteria, where they are gated by
glutathione-S conjugates and inactivated by glutathi-
one. These antiporters provide a means for acidifica-
tion of the cytosol as a defense to toxic electrophiles
such as methylglyoxal (Munro et al., 1991). The Ara-
bidopsis genome contains six putative K" efflux an-
tiporters (Fig. 1), herein named KEA1 through KEA®6;
a cDNA sequence is available only for KEA1 (Gen-
Bank accession no. AF003382; W. Yao, N. Hadjeb,
and G.A. Berkowitz, unpublished data). The KEAs
belong to the monovalent cation:proton antiporter
family 2 (CPA2 family). See Figure 4 for a phylo-
genetic tree of all Arabidopsis H"-coupled antiport-
ers. None of the plant KEAs has been experimentally
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characterized. In principal, they could also sequester
K" into acidic compartments. For example, vacuolar
K" loading is mediated by H" /K" exchange and is
driven by the vacuolar proton pumps. Therefore,
elucidation of the subcellular localization of the
KEAs will be pivotal to the understanding of their
physiological roles.

Cation/H™ Antiporter Family

Most cations are transported against their electro-
chemical gradient using proton-coupled transporters
rather than primary ion pumps. With proton pumps
at the PM and endomembranes of plant cells, we can
predict that cation/proton antiporters extrude cat-
ions from the cytosol to the outside across the PM or
into intracellular compartments, including the vacu-
ole (Sze et al., 1999). The best examples of these are
cotransporters that extrude Ca®>* and Na* from the
cytosol to maintain low cytosolic concentrations. At
the vacuole membrane, Ca®>*/H" and Na* /H" anti-
porters transport Ca®>* and Na™, respectively, into
the vacuole. The properties of Ca>" /H" transporters
have been well characterized through biochemical
analysis (Blumwald and Poole, 1985; Schumaker and
Sze, 1986) In addition, similar transport activities are
present in the plasma membrane and the chloroplast
thylakoid (Ettinger et al., 1999; Sanders et al., 1999;
Blumwald et al., 2000). Ca®>*/H"* and Na™/H" anti-
porter cDNAs have been isolated from plants (Gaxi-
ola et al., 1999; Hirschi, 2001); however, the com-
pletion of the Arabidopsis genome indicates that
a large number of homologs to these transporters
(Fig. 4; Table II) exist within the CaCA and CPA
families (http:/ /www.biology.ucsd.edu/~ipaulsen/
transport/). The predicted proteins in general have
10 to 14 TM domains with about 400 to <900 resi-
dues. Yet, the substrate specificity, regulation, and
membrane localization of these antiporters cannot be
predicted with certainty from phylogenetic relation-
ships. Therefore, the functional characterization of
these large families is only beginning.

Yeast has been an excellent model system for
studying plant vacuolar antiporters for Ca®" and
Na*; thus, homologous proteins or ORFs from yeast
are included in Figure 4 (Sze et al., 2000). Molecular
and biochemical studies have shown that high-
capacity H" exchange activity in yeast is important
for Na" and Ca" homeostasis (Cunningham and
Fink, 1996; Nass et al., 1997). In yeast, NHX1, a
vacuolar Na™ /H" exchanger, is required for vacuo-
lar Na* sequestration and contributes to Na* toler-
ance in certain strains. Another yeast Na*/H" anti-
porter, NHA1, appears to function in Na™ transport
across the plasma membrane. The yeast genome se-
quencing project has identified a third ORF, YJL094C
similar to Na®"/H" exchangers from Enterococcus
hirae, as well as Lactococcus lactis. The function of this
ORF in Na® or K" homeostasis is currently un-
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Figure 4. Phylogenetic tree of Arabidopsis cation antiporters. Members of the families CPA1, CPA2, CaCA, NhaD, and CCC
are presented (http://www.biology.ucsd.edu/~ipaulsen/transport/) with homologous protein sequences from the yeast
Saccharomyces cerevisiae. Gene names, accession nos., and family assignment are shown for each Arabidopsis sequence.
Alignments of full-length sequences were performed using ClustalW (Thompson et al., 1994). The tree was constructed using
the neighbor joining function of Paup 4.0 (Swofford, 1998). Values indicate the number of times (in percent) that each

branch topology was found during bootstrap analysis.

known. In yeast, vacuolar H"/Ca®>" exchange is ac-
complished by VCX1, a member of the CaCA gene
family. It is interesting that a single point mutation in
this gene causes increased manganese transport (Del
Poza et al., 1999). This type of observation under-
scores how difficult it is to determine transport prop-
erties from primary sequence information. That said,
there are three other CaCA genes in the yeast genome
whose function in ion homeostasis is unknown.

Plant Physiol. Vol. 126, 2001

Two plant H" /Ca®*" exchangers were cloned from
Arabidopsis by suppression of yeast mutants de-
fective in vacuolar Ca®* transport (Hirschi, 2001).
These genes have been termed CAX1 and CAX2 for
calcium exchangers. At the deduced amino acid
level, these gene products are 47% identical and are
both similar to VCX1; however, they appear to have
different ion specificities. Transgenic tobacco (Nicoti-
ana tabacum) plants expressing the Arabidopsis CAX1
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Table Il. Selected cation/proton antiporters found in Arabidopsis

EM, Endomembrane; VM, vacuolar membrane; PM, plasma membrane.

Family Gene Name AGlcgjzsme Residues Topology Substrate I_Coecl('[:ilzrl:n
CaCA CAX1 At2g38170 459 9-11 T™M Ca?*/H™" EM
CAX2 At3g13320 439 7-11 T™M Cd**, Ca®*, Mn?"/H* VM
CAX3/HCX1 At3g51860 448 8-10 T™M - ?
CAX7 At5g17860 570 9-15T™ - ?
MHX1 At2g47600 539 10 T™™ Mg?*, Zn?t/H* VM
CPA1 NHX1 At5g27150 538 12 T™ Na*/H* VM
SOS1/NHX7 At2g01980 1,162 12 T™M Na*/H* VM
NHX8 At1g14660 697 9™ - PM?
CPA2 CHX6 At1g08140 1,536 24 T™M - -
CHX7 At2g28170 617 12 T™M - -
CHX17 At4g23700 820 10-13 T™ - -
CHX23 At1g05580 1,193 12 T™ - -
KEAT At1g01790 618 10 T™ K*/H* -
NhaD NHD2 At1g49810 420 6-10 T™M - -

gene display altered calcium levels and are perturbed
in stress responses (Hirschi, 2001). Transgenic to-
bacco plants expressing CAX2 accumulate cadmium,
calcium, and manganese ions and have increased
tolerance to Mn”* stress. An additional CAX ho-
molog recently was cloned from Arabidopsis. The
protein is 77% identical to CAX1, and the gene has
been tentatively termed AtHCX1 [= CAX3] for Ara-
bidopsis homolog of CAX1. Unlike CAX1 and CAX2,
this gene fails to suppress yeast mutants defective in
vacuolar Ca®" transport. There are four other closely
related CAX homologs and there are a total of 12
CaCA family members in Arabidopsis (Fig. 4). Given
the potentially diverse function and localization of
these 12 CaCA gene products, we propose that in the
future “CAX” should serve as the standard abbrevi-
ation for cation exchanger.

The Arabidopsis vacuolar Na* /H™" antiporter At-
NHX1 (538 residues) was identified by its similarity
to the yeast vacuolar antiporter NHX1 (633 residues;
Gaxiola et al., 1999; Quintero et al., 2000). Ectopic
expression of this gene causes dramatic salt tolerance
in Arabidopsis plants (Apse et al., 1999). AtNHX1 is
localized to plant vacuoles and is expressed in all
plant organs. Its role as an Na*/H™" antiporter was
demonstrated by Na* dissipation of a pH gradient
(acid inside) in vacuoles from plants overexpressing
AtNHX1. An Arabidopsis NHA1 homolog, SOS1 is a
putative plasma membrane Na'/H" antiporter
(Zhu, 2001). The predicted SOS1 protein of 1,162
residues (127 kD) is larger than most cation/proton
antiporters because it has 12 TM domains in the
N-terminal half and a long C-terminal cytoplasmic
tail. Arabidopsis mutants of sos1 are salt sensitive;
furthermore, ectopic expression of the gene causes
salt tolerance in Arabidopsis. These findings cer-
tainly pique enthusiasm in elucidating the function
of other putative Na® transporters in Arabidopsis
(Zhu, 2000).

It is surprising that more than 40 genes encode
homologs of Na*/H" antiporters in Arabidopsis.
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Given that Na™ is not an essential nutrient for plants,
we need to consider that these homologs may have
other functions in plants. An informative example is
the characterization of AtMHX1, which was cloned
via homology to mammalian Na*/Ca®" exchangers
(Shaul et al., 1999). This gene encodes an H"-coupled
antiporter that transports Mg?* and Zn?>* into plant
vacuoles. It is interesting that AtMHX1 is expressed
in the vascular tissue. In Arabidopsis, there are eight
members of the CPA1 subfamily, including AtNHX1,
and SOS1/AtNHX7 (Zhu, 2001). The CPA2 subfam-
ily with 33 members includes five homologs of a
K"/H" antiporter, AtKEA1. In addition, there are
two members of the NhaD family (Na*/H" anti-
porter), previously only found in bacteria and one
member of the CCC family (NaCl and/or KCI sym-
port; Fig. 4). Most of the gene products in the CPA2
family have not been characterized; thus, we have
named them CHX# for cation/H™ exchangers. Be-
cause K" is the major osmoticum in the cytosol and
the vacuole, it is likely that the CHXs transport
monovalent and divalent cations with varying spec-
ificities. For instance, K" /H™" antiport is needed to
move K" into the vacuole against an electrical gradi-
ent (positive inside +25 mV). Furthermore, active
extrusion of cations from the xylem parenchyma into
xylem vessels could depend on H"-coupled antiport-
ers at the plasma membrane, or exocytosis of small
“vacuoles” loaded with ions. Several of the CAX and
CHX homologs contain organellar-targeting se-
quences, consistent with the idea that cation cotrans-
porters are also localized in mitochondria and
chloroplasts.

CNGC Transporter Family

A family of CNGCs, first discovered in barley
(Schuurink et al., 1998), is characterized by the pres-
ence at the C terminus of both cyclic nucleotide and
calmodulin binding domains. Membrane-associated
domains strongly resemble those of the Shaker
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super-families, of which the KAT and AKT families
are a part. Biochemical studies with a CNGC ortho-
logue from tobacco and CNGC1 from Arabidopsis
have elegantly demonstrated that the cyclic
nucleotide-binding domain overlaps with that of cal-
modulin (Arazi et al.,, 2000; Kohler and Neuhaus,
2000), thereby suggesting that cyclic nucleotides and
calmodulin interact in regulation of channel activity.

The CNGC gene family of Arabidopsis comprises
20 members with overall sequence similarities rang-
ing between 55% and 83%. Alignment of the pre-
dicted amino acid sequences results in the tree shown
in Figure 5. According to this tree, CNGCs can be
divided into four groups, each of them containing
between four and six genes. Whereas groups I, II, and
III are closely related, group IV genes are more dis-
tantly related to the other CNGCs as well as to each
other. Within group IV, two subgroups can be dis-
tinguished, each of them containing two genes
(CNBT1 and CNBT2 in group IVA and CNGC4 and

At2g46450
(CNGC12)
(CNGC11)
At2g46430 At1g15990
(CNGC3) (CNGCTY)
At4g01010
(CNGC13)

At1g01340
(CNGC10 = ACBK1)
At5g53130
(CNGC1) — 100

At5g14870
(CNGC18)
At3g48010
(CNGC16)
At4g30360
(ONGo17)  A2924610 apao8260
(CNGC14) CNGC15)
Group I (

100
100

Cation Transporter Families of Arabidopsis

CNGC2 in group IVB). We evaluated the relevance of
this group assignment, which was based on compar-
ing entire sequences, by creating trees for two func-
tional domains within the CNGC sequences. Align-
ment of the putative P-region resulted in identical
grouping of the genes, but group IVA and IVB genes
were situated even further away from the other
groups as well as from each other. A similar result
was obtained when comparing putative calmodulin-
binding domains (CaMDs). Here, a clear distinction
between groups I, II, and III is no longer apparent.
However, the CaMD of one group I gene (At2g46450)
has very low homology to CaMDs of other CNGCs.
This is particularly interesting because At2g46450 is
the last gene within a tandem arrangement of three
CNGC genes on chromosome 2 (At2g46430,
At2g46440, and At2g46450). Other CNGCs have also
been subjects of gene duplication events. Group IVA
genes At3g1769 and At3g1770 are in tandem arrange-
ment on chromosome 3. Inter-chromosome duplica-

Group Il

At1g19780 (CNGC8)
At5g57940 (CNGC5)

At2923980 (CNGC6)
At4g30560
(CNGC9)

At3g17690
(CNGC19 = CNBT2)

At3g17700
(CNGC20 = CNBT1)

100

Group IVA

At5g15410
(CNGC2)

Group IV B
At5g54250
(CNGC4)

Figure 5. Phylogenetic tree of the Arabidopsis CNGC transporters. Entries in the Munich Information Center for Protein
Sequences Arabidopsis database (MATDB) were compared with available corresponding cDNA entries in the National
Center for Biotechnology Information database, to minimize errors for each predicted protein sequence. By default, the
MATDB predicted protein sequences were used for final alignment. Exceptions are: accession no. AAF97331.1 for
At1g01340, accession no. CAB40128.1 for At2g46430, accession no. AAF73129.1 for At3g17690, and accession no.
AAF73128.1 for At3g17700. Bold lines indicate that protein sequences predicted from cDNAs are available. Final protein
alignment, tree drawing, and bootstrap analysis were done with ClustalX (Higgins and Sharp, 1988), and the tree was drawn
using Treeview. CNGCs 1 through 6 have already been named in the literature (Kéhler et al., 1999). To generate a uniform
nomenclature, ACBK1, CNBTT, and CNBT2 are assigned the names CNGC10, 20, and 19, respectively, and the remaining
genes are also assigned systematic names. Values indicate the number of times (in percent) that each branch topology was

found during bootstrap analysis.
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tion between chromosomes 2 and 4 was found for
At2g23980 and At4g30560 (group II) and between
chromosomes 1 and 4 for At1g01340 and At4g01010.
A co-alignment of the Arabidopsis CNGC family
with CNGCs from tobacco (NtCBP4 and NtCBP7;
Arazi et al., 1999) and barley (HvCBT1; Schuurink et
al.,, 1998) shows that these protein sequences are
closely related to At5g53130 (group I), suggesting
that they share a common ancestor.

Functional heterologous expression of CNGCs has
so far been difficult to achieve. Phenotypic character-
ization of K™ uptake-deficient yeast expressing vari-
ous CNGCs has suggested that some family members
might form K*-permeable channels (Kohler et al.,
1999; Leng et al., 1999), and these findings are sup-
ported by work with CNGC2, which, when ex-
pressed in X. laevis oocytes, appears to form K*-
permeable channels (Leng et al, 1999). An
Arabidopsis mutant in pathogen defense responses
was found to have a mutation in CNGC2 (Clough et
al., 2000). In addition, a knockout mutant in CNGC1
has been identified which shows a Pb*"-resistant
phenotype (Sunkar et al., 2000), in accord with the
possibility that CNGCs are permeable to divalent
cations. Two complications emerge in studies of
CNGCs. First, the existence of an extensive gene
family raises the possibility that redundancy will
preclude accurate functional characterization using
reverse genetic approaches. Second, in mammalian
systems, CNGC isoforms have been shown to be
differentially capable of generating functional ion
channels when expressed heterologously (Finn et al.,
1996). These findings must be viewed against the
notion that functional channels are probably tet-
rameric (Finn et al., 1996). Thus, some isoforms are
competent in forming channels when expressed
alone, whereas hetero-oligomeric expression is re-
quired for functioning of other isoforms.

CDF Metal Transporter Family

The CDF family, first identified by Nies and Silver
(1995), is a diverse family with members occurring in
bacteria, fungi, plants, and animals. All of these pro-
teins have six putative TM domains and a signature
N-terminal amino acid sequence (Paulsen and Saier,
1997). These proteins also share a characteristic
C-terminal cation efflux domain (Pfam 01545). Eu-
karyotic family members also contain a His-rich re-
gion between TM domains four and five, which is
predicted to be within the cytoplasm (Paulsen and
Saier, 1997). The significance of this His-rich region is
not known. However, changes in this region in CDF
family members identified from the Ni hyperaccu-
mulator Thlaspi goesingense appear to affect metal
specificity, suggesting these sequences may be in-
volved in metal binding (M.W. Persans, K. Nieman,
and D.E. Salt, unpublished data). Because of the lack
of basic information about the energetics of the CDF
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transporters, and the known efflux function of the
characterized family members, we propose that a
more accurate name for the family is the cation efflux
family (CE), as used to classify these proteins in the
Pfam protein domain database (http://pfam.wus-
tledu/). Therefore, throughout the rest of this dis-
cussion, we will refer to the CDF family as the CE
family.

Several eukaryotic members of the CE family have
been functionally characterized. The plasma
membrane-localized ZnT1 protein from mammals is
known to efflux Zn from rat cells (Palmiter and Find-
ley, 1995). ZnT2 is very similar to ZnT1 in that it has
six membrane-spanning domains, an intracellular
His-rich loop, and a long C-terminal tail (Palmiter et
al., 1996). However, unlike ZnT1, which is localized
to the plasma membrane, ZnT2 is localized in intra-
cellular vesicular membranes and is involved in the
sequestration of Zn into these vesicles. Another ZnT
homolog, ZnT3 is localized to synaptic vesicles, and
it is proposed that ZnT3 pumps Zn into synaptic
vesicles as a storage pool of Zn to be released upon
excitation of the neuron (Wenzel et al.,, 1997). A
fourth ZnT homolog (ZnT4) has also been isolated
from mice that are defective in Zn transport into milk
(Huang and Gitschier, 1997). This ZnT4 transporter is
responsible for effluxing Zn from the mammary cells
into the milk, and it is expressed at high levels in
mammary tissue. Therefore, all the ZnT family mem-
bers are involved in effluxing Zn out of cells or into
intracellular compartments. Two related proteins,
COT1 (Conklin et al., 1992) and ZRC1 (Conklin et al.,
1994), have been characterized in yeast. These genes
share the six putative membrane-spanning domains
of the ZnT genes and the His-rich region. COT1 is
involved in Co resistance, whereas ZRC1 is involved
in Zn and Cd resistance. Yeast deletion mutants of
either gene show increased sensitivity to Co (COT1
deletion), or Zn and Cd (ZRC1 deletion) and overex-
pression in yeast leads to increased resistance to Co
and Zn. COT1 and ZRC1 are localized to the yeast
vacuolar membrane (Li and Kaplan, 1998), suggest-
ing these proteins are involved in effluxing Co, Zn,
and Cd into the vacuole.

A plant member of the CE family recently was
characterized in Arabidopsis (Van der Zaal et al,
1999), and designated Zinc transporter of Arabidop-
sis (ZAT). As the other proteins described previously,
ZAT has six putative TM domains and a His-rich
region between the predicted TM spanning helices 4
and 5. This represents the first full-length CE family
member to be identified and shown to be involved in
heavy metal tolerance in plants. Although ZAT holds
prior authority, to allow for expansion of the CE
family in Arabidopsis and plants in general we pro-
pose that metal tolerance protein (MTP) would be a
better base name for ZAT-related proteins. Under
such a system, ZAT would be renamed AtMTP1,
with the two-letter prefix identifying the species.
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Closely related proteins would be named AtMTPn
(where n > 1), and more distantly related proteins
would be named AtMTPx (where x = a-z). Such a
system would allow for more systematic naming as
the plant CE family expands. This nomenclature
would also be more applicable to naming future
plant CE family members that may have different
metal transport characteristics compared with ZAT.

A search of the completed Arabidopsis genome re-
veals the existence of eight genes (Table III) encoding
proteins with homology to members of the CE family.
ZAT (AT2g46800 or AtMTPI) is located on chromo-
some II, AtMTPal (AT3g61940) and AtMTPa2
(AT3g58810) on chromosome III, AtMTPb (At2g29410)
on chromosome II, AtMTPc1 (At2g47830) on chromo-
some I, AtMTPc2 (At3g12100) and AtMTPc3
(At3g58060) on chromosome III, and AtMTPc4
(At1g51610) on chromosome I. ESTs are available for
ZAT (AtMTP1; gi nos. 2763071, 8691041, 8720027,
8720035, and 5842768), AtMTPcl (gi nos. 906769,
2749524, 5841145, and 8683092), AtMTPc2 (gi no.
5844377) and numerous other CE family members
from Medicago truncatula, Glycine max, Lycopersicon
esculentum, Sorghum bicolor, Brassica campestris, rice
(Oryza sativa), barley, Triticum aestivum, and maize
(Zea mays).

Comparison of the genomic, cDNA, and EST se-
quences of ZAT (AtMTP1) reveals that this gene con-
tains no introns (Table III). This analysis also re-
vealed an error in the reported cDNA sequence of
ZAT (Van der Zaal et al., 1999). Insertion of an extra
C after nucleotide 769 and deletion of a C after nu-
cleotide 793 leads to a short frame shift, producing
the amino acid sequence (187)-PQSWTWAW-(194)
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instead of (187)-HSHGHGHG-(194). It is unknown
whether this is a sequencing error or the cDNA ac-
tually contains this incorrect sequence. The AtMTPal,
AtMTPa2, and AtMTPb genes also appear to contain
no introns (Table III). However, the more distantly
related AtMTPc1, AtMTPc2, AtMTPc3, and AtMTPc4
genes contain between six and 11 predicted introns
(Table III).

Based on the presence of the N-terminal signature
sequence SX(ASG)(LIVMT),(SAT) (DA)(SGAL)(LIV-
FYA)(HDH) X;D (Paulsen and Saier, 1997), the
C-terminal cation efflux domain, and the six con-
served TM domains (Paulsen and Saier, 1997), these
sequences were confirmed to be members of the CE
family. The Arabidopsis CE family members appear
to cluster into four subfamilies: groups 1, II, III, and
IV (Fig. 6), with the group I, II, and III subfamilies
being more closely related to the yeast CE family
members COT1 and ZRC1 than to the group IV sub-
family (Fig. 6). All members of the group I, II, and III
subfamilies contain a fully conserved N-terminal sig-
nature sequence, a C-terminal cation efflux domain,
and six TM domains. For comparison, the yeast CE
family members COT1 and ZRC1 also show all these
features. However, only subsets of these features are
present in the group IV subfamily, demonstrating its
more distant relationship to the other subfamilies.
None of the group IV subfamily members show the
characteristic six TM domains. Only AtMTPc1 con-
tains both a fully conserved N-terminal signature
sequence and a recognizable C-terminal cation efflux
domain. AtMTPc2, AtMTPc3, and AtMTPc4 only
show weak conservation of the N-terminal signature

Table Ill. Full-length ORFs and cDNA sequences of plant cation efflux family members

Genes in bold sequence derived from cDNAs. No. of introns in parentheses not confirmed from cDNAs. CE, C-terminal Cation Efflux motif
(Pfam 01545, http://pfam.wustl.edu/); CSS, conserved N-terminal signature sequence SX(ASG)(LIVMT),(SAT)(DA)(SGAL)(LIVFYA)(HDH)X;D
(Paulsen and Saier, 1997); PSS, partial N-terminal signature sequence; TM (TMpred; http://www.ch.embnet.org/software/TMPRED_form.html);
HRR, cytoplasmic His-rich region between transmembrane regions 4 and 5; na, not available.

Species Gene Name EST’s GenBank gi No. GenBank gi No. AGI Genome Codes Introns Motif
Arabidopsis AtMTPc1 906769, 2749524, 3738295 At2g47830 (am CE, CSS, 5-TM
5841145, 8683092
Arabidopsis AtMTPc2 5844377 10092478 At3g12100 (8) CE, PSS, 5-TM
Arabidopsis AtMTPc3 na 6729549 At3g58060 (6) CE, PSS, 4-TM
Arabidopsis AtMTPc4 na 10092347 At1g51610 (1m PSS, 5-TM
Arabidopsis AMTPb1 na 3980394 At2g29410 (0) CE, CSS, 6-TM, HRR
Arabidopsis AtMTPa2 na 7630076 At3g58810 (0) CE, CSS, 6-TM, HRR
Arabidopsis AtMTPal na 6899892 At3g61940 (0) CE, CSS, 6-TM, HRR
Arabidopsis ZAT (AtMTP1) 2763071, 8691041, 4206640 At2g46800 0 CE, CSS, 6-TM, HRR
8720027, 8720035,
5842768
*Thlaspi montanum TmMTP,? na 1 na (0) CE, CSS, 6-TM, HRR
var fendleri®
2T. goesingense® TgMTP3? na 1 na 0 CE, CSS, 6-TM, HRR
2T. goesingense® TgMTP2? na 1 na na CE, CSS, 6-TM, HRR
°T. goesingenseb TgMTPT? na 1 na na CE, CSS, 6-TM, HRR
Brassica juncea BiMTP1? na 1 na (0) CE, CSS, 6-TM, HRR
Thlaspi arvense TaMTPT1? na 1 na (0) CE, CSS, 6-TM, HRR

* M.W. Persans, K. Nieman, and D.E. Salt, unpublished data.

b Metal hyperaccumulator plants.
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Figure 6. Phylogenetic tree of plant CDF transporters. The phylogenetic tree of the CE protein family was drawn using
PHYLIP (Felsenstein, 1989) after alignment of the sequences with CLUSTAL W (Thompson et al., 1994). For ZAT (AtMTP1;
At2g46800), TgMTP1, TgMTP2, TgMTP3, TmMTP1, TaMTP1, BjMTP1, and the yeast sequences ZRC1 (gi no. 736309) and
COT1 (gi no. 171263), the protein sequences were predicted from cDNAs, and these branches of the tree are in bold. For
AtMTPal (At3g61940), AtMTPa2 (At3g58810), AtMTPb (At2g29410), AtMTPc1 (At2g47830), AtMTPc2 (At3g12100), At-
MTPc3 (At3g58060), and AtMTPc4 (At1g51610) protein sequences were translated from the ORFs predicted from genomic
sequences, and these branches are represented by thin lines. Values indicate the number of times (in percent) that each

branch topology was found during bootstrap analysis.

sequence and only AtMTPc2 and AtMTPc3 contain a
recognizable C-terminal cation efflux domain.

We also include in the Arabidopsis CE family tree
recently sequenced genes encoding CE family mem-
bers from T. goesingense (TgMTP1, TgMTP2, and Tg-
MTP3), T. montanum var fendleri (TmMTP1), T. ar-
vense (TaMTP1), and B. juncea (BjMTP1; Table III; Fig.
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6). All these members cluster with ZAT (AtMTP1) in
the group I subfamily, and also contain no introns. It
is interesting that we note that the CE family members
from the metal-hyperaccumulating Thlaspi spp. (T.
goesingense and T. montanum) appear to cluster as a
separate subgroup within the group I subfamily.
Whereas the TaMTP1 protein from the nonaccumula-

Plant Physiol. Vol. 126, 2001



tor Thlaspi spp., T. arvense clusters with the CE family
members from other nonaccumulator species, includ-
ing B. juncea and Arabidopsis.

Functional data on the plant MTP proteins is lim-
ited; however, a role in metal tolerance has been
demonstrated both in planta and by heterologous
expression in yeast. Overexpression of ZAT (At-
MTP1) conferred increased Zn resistance and root Zn
accumulation in Arabidopsis (Van der Zaal et al.,
1999). This suggests a role for ZAT (AtMTP1) in Zn
homeostasis in Arabidopsis. Yeast strains deficient in
COT1 or ZRC1 and proteins involved in vacuolar
sequestration of heavy metals (Li and Kaplan, 1998)
are Co, Zn, and Cd sensitive (Conklin et al., 1992,
1994). In such yeast, expression of the COT1 and ZRC1
homologs TgMTP1, TgMTP2, and TgMTP3 comple-
ments the mutant metal-sensitive phenotype, im-
parting increased resistance to Cd**, Co**, Ni**, and
Zn*>* (M.W. Persans, K. Nieman, and D.E. Salt, un-
published data). Complementation of yeast strains
deficient in vacuolar metal sequestration by the Tg-
MTP proteins suggests that these proteins play a role
in the vacuolar sequestration of metals in planta.
Based on northern and EST analysis, expression of
ZAT (AtMTP1) occurs in whole seedlings, flower
buds, inflorescence, and root tissue. However, the
steady-state levels of ZAT (AtMTP1) mRNA in Ara-
bidopsis seedlings are not regulated in response to
elevated concentration of Zn (Van der Zaal et al.,
1999). Steady-state levels of TgMTP’s mRNA are also
unregulated by Ni exposure (Persans et al., 2001).
Based on the analysis of ESTs, expression of CE fam-
ily members in various other species is also found in
numerous tissues including the cotyledons, root,
shoot, flowers, and fruit.

To further understand the role of the CE family in
heavy metal homeostasis in plants a more detailed
analysis of the different members is required. This
analysis should include determination of the proteins
expression patterns, membrane localization, metal
specificity, and transport mechanisms, including
structure/function analyses.

NRAMP Metal Transporter Family

Genes encoding members of the NRAMP family of
integral membrane proteins have been identified in
bacteria, fungi, plants, and animals. Scanning
through the completed Arabidopsis genome se-
quence, we find six genes encoding proteins with
high homology to NRAMPs (Fig. 7). AtINRAMP1, 2,
and 6 are located on chromosome I (ACO01713,
10092406, and AC010924), AtINRAMP3 on chromo-
some II (AC002391), AtNRAMPS5 on chromosome IV
(AL035526), and AtNRAMP4 on chromosome V
(AB007645). ESTs are also available for three of these
genes: AtNRAMP1 (Z30530, AI998720, T04467,
732611, and AA585940), AtNRAMP2 (N38346), At-
NRAMP3 (AV563322), and AtNRAMP4 (AV551675

Plant Physiol. Vol. 126, 2001
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At1g15960
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At5g03280

Figure 7. Phylogenetic tree of Arabidopsis NRAMP transporters. The
phylogenetic tree of AINRAMP protein sequences was drawn using
Treeview program after alignment of the sequences with ClustalX
program. For AtNRAMPI1, 2, 3, 4, and EIN2 protein sequences
predicted from cDNA translation were used (AAF36535, AAD41078,
AAF13278, AAF13279, and AAD41077, bold lines). For AtNRAMP5
and 6, protein sequences translated from the ORFs predicted from
genomic sequences (CAB37464 and AAF18493, thin lines) were
used because cDNA sequences are not available for these genes.
Note that for EIN2, only the sequence of the NRAMP homologous
domain of the protein was taken into account to construct the tree.
Values indicate the number of times (in percent) that each branch
topology was found during bootstrap analysis.

and AI618748). Many additional ESTs indicate that
genes from the NRAMP family are present in other
dicots (Gossypium hirsutum, Lycopersicon esculentum,
G. max, and M. truncatula) and in monocots (rice and
maize). The proteins encoded by AtNRAMP genes
cluster in two subfamilies: one including AINRAMP1
and 6 and the other including AtINRAMP2 through 5
(Fig. 7). In addition, the ethylene insensitivity gene
EIN2 that functions in transduction of multiple stress
signals contains an NRAMP homologous domain but
its homology with other members of the NRAMP
family is much lower (Alonso et al., 1999).

NRAMP genes originally were identified through
very diverse genetic screens: mouse NRAMP1 deter-
mines sensitivity to bacteria and led to the gene
family name, NRAMP (natural resistance-associated
macrophage protein; Cellier et al., 1995). It was
shown later that the yeast NRAMP homologs SMFs
and DCT1/Nramp2 in mammals can mediate the
uptake of a broad range of metals (Supek et al., 1996;
Gunshin et al., 1997; Chen et al., 1999). cDNAs cor-
responding to Arabidopsis NRAMPI, 2, 3, and 4
genes have been cloned (Fig. 7, bold lines).

The functions of AtNRAMP proteins in metal
transport have been demonstrated both in the heter-
ologous yeast expression system and in planta
(Alonso et al., 1999; Curie et al., 2000; Thomine et al.,
2000). Yeast strains that are deficient in iron and

1659



Miaser et al.

manganese uptake (Eide et al., 1996; Supek et al,,
1996) were analyzed. In yeast, expression of At-
NRAMP1, 3, and 4 can complement the phenotype of
yeast strains deficient for manganese or iron uptake
(Curie et al., 2000; Thomine et al., 2000). In contrast,
expression of EIN2 does not complement those phe-
notypes (Alonso et al., 1999; Thomine et al., 2000). In
addition, expression of AtNRAMP]I, 3, and 4 in yeast
increases their Cd*" sensitivity and Cd*" accumula-
tion (Thomine et al., 2000). This indicates that these
AtNRAMP genes encode multispecific metal trans-
porters. In Arabidopsis, AtINRAMP1, 2, 3, and 4 are
expressed both in roots and aerial parts. In Arabidop-
sis roots, AtNRAMPI1, 3, and 4 mRNA levels
are up-regulated under Fe starvation (Curie et al.,
2000; Thomine et al.,, 2000). The observations that
AtNRAMP3 overexpressing plants can accumu-
late higher levels of Fe, upon Cd?* treatment (Tho-
mine et al., 2000) and that AtNRAMP1 overexpress-
ing plants confer resistance to toxic levels of Fe
(Curie et al., 2000) provide further evidence for a
role of AtNRAMPs in Fe transport in planta. The
cellular and subcellular/membrane expression pat-
terns of AtINRAMP transporters has not yet been
analyzed and possible roles in organellar transport
have been discussed (Thomine et al., 2000). Data on
AtNRAMPs suggest that in addition to the IRT fam-
ily of Fe transporters, AANRAMPs may contribute to
Fe homeostasis in plants (Eide et al., 1996; Curie et
al., 2000; Thomine et al., 2000). In Arabidopsis, At-
NRAMP3 disruption leads to an increase in Cd*"
resistance, whereas overexpression of this gene con-
fers increased Cd*" sensitivity (Thomine et al., 2000)
indicating that this metal transporter gene plays a
role in plant Cd*" transport and sensitivity.

To further understand the roles of this transporter
gene family in metal homeostasis in plants, a more
systematic characterization of the different members
of the AtNRAMP family will be required. Efforts
should be made to determine their substrate speci-
ficity by heterologous expression in yeast, their cell
and tissue-specific expression, the cell membrane in
which they reside, together with extensive functional
characterization of AtNRAMP-disrupted mutants.
Due to possible partial redundancies double or mul-
tiple mutants may be required, although cadmium
and iron transport-related phenotypes for At-
NRAMP3 overexpression and gene disruption have
been identified (Thomine et al., 2000).

ZIP Metal Transporter Family

Members of the ZIP gene family, a novel metal
transporter family first identified in plants, are capa-
ble of transporting a variety of cations including Cd,
Fe, Mn, and Zn (Guerinot, 2000). The family takes its
name from the founding members, ZRT1, ZRT2, and
IRT1. ZRT1 and ZRT?2 are, respectively, the high- and
low-affinity Zn transporters of S. cerevisine (Zhao
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and Eide, 1996a, 1996b). IRT1 is an Arabidopsis trans-
porter that is expressed in the roots of Fe-deficient
plants (Eide et al., 1996) and is believed to be respon-
sible for the uptake of Fe from the soil. The ZIP
family of Arabidopsis contains 14 other members in
addition to IRT1, with overall amino acid sequence
similarities ranging between 38% and 85%. Align-
ment of the predicted amino acid sequences shows
that the ZIP proteins can be divided into four groups,
with one of the groups clearly being more distantly
related (Fig. 8).

The presence of 15 different ZIP genes raises the
question: Why does Arabidopsis need so many ZIP
transporters? Metal ions need to be transported from
the soil solution into the plant and then distributed
throughout the plant, crossing both cellular and or-
ganellar membranes. It is presumed that some of the
ZIP proteins will be found to localize to different
membranes. For example, S. cerevisiae has three ZIP
family members, two of which, ZRT1 and ZRT2,
function in uptake of Zn across the plasma mem-
brane and one of which, ZRT3, functions in the trans-
port of Zn from the vacuole into the cytoplasm (Mac-
Diarmid et al.,, 2000). Furthermore, we know that
some Arabidopsis ZIP family members have differ-
ent substrate specificities and affinities. At this time,
we have functional information for five Arabidopsis
ZIP members based on yeast complementation. ZIP1,
ZIP2, and ZIP3 can rescue a Zn uptake mutant of
yeast and have been shown to mediate Zn uptake
(Grotz et al., 1998). When expressed in yeast, IRT1
mediates uptake of Fe, Zn, and Mn (Eide et al., 1996;
Korshunova et al., 1999). Cadmium inhibits uptake of
these metals by IRT1 and expression of IRT1 in yeast
results in increased sensitivity to Cd (Rogers et al,,
2000), suggesting that Cd is also transported by IRT1.
IRT2 can complement both the Fe and Zn uptake
mutants of yeast but, unlike IRT1, it does not appear
to mediate the transport of Mn or Cd in yeast (Vert et
al., 2001). Both IRT1 (Eide et al., 1996) and IRT2 (Vert
et al., 2001) are expressed in the roots of Fe-deficient
plants. We also know that ZIP1, ZIP3, and ZIP4 are
expressed in the roots of Zn-deficient plants and that
ZIP4 is expressed in the shoots of Zn-deficient plants
(Grotz et al., 1998). We are currently characterizing
each of the ZIP family members as to whether they
are transcriptionally responsive to levels of Fe, Zn,
and/or Mn. We are also identifying lines that carry
T-DNA insertions in specific ZIP genes as well as
examining the effect of overexpression of each family
member on metal uptake by the plant. We predict
that some ZIP functions may be redundantly speci-
fied so overexpression phenotypes may be more in-
formative than loss-of-function phenotypes.

The ZIP family includes proteins from bacteria,
archaea, fungi, protozoa, insects, plants, and animals.
At this time, over 85 ZIP family members have been
identified and grouped into four main subfamilies
(Gaither and Eide, 2001). Subfamily I includes all of
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Figure 8. Phylogenetic tree of Arabidopsis ZIP transporters. Gene names and accession nos. are shown for each Arabidopsis
sequence. Proteins for which a full-length cDNA is available are indicated by bold letters and lines. Alignments of full-length
sequences were performed using ClustalW (Higgins and Sharp, 1988). The tree and bootstrap analyses were performed using
the neighbor-joining algorithm implemented in MEGA version 2.0 (Kumar et al., 2000). Values indicate the number of times
(in percent) that each branch topology was found during bootstrap analysis.

the ZIP genes discussed here in addition to members
from other plant species including pea (Pisum sati-
vum), tomato, rice, and the metal-hyperaccumulating
plant Thlaspi caerulescens. It has been suggested that a
ZIP gene homolog, ZNT1, may be involved in the
zinc hyperaccumulation seen in this species. Unlike
the non-hyperaccumulating species T. arvense, T. cae-
rulescens expresses ZNT1 at high levels regardless of
the Zn status of the plant (Pence et al., 2000).

All of the functionally characterized ZIP proteins
are predicted to have eight TM domains and a similar
membrane topology in which the amino- and
carboxy-terminal ends of the protein are located on
the outside surface of the plasma membrane. This
orientation has been confirmed for several family
members. Arabidopsis ZIP proteins range from 326
to 425 amino acids in length; this difference is largely
due to the length between TM domains III and 1V,
designated the “variable region.” In most cases, the
variable region contains a potential metal-binding
domain rich in His residues that is predicted to be
cytoplasmic. For example, in IRT1, this motif is
HGHGHGH. Although the function of this motif is
unknown, such a His-rich sequence is a potential
metal-binding domain and its conservation in many
of the ZIP proteins suggests a role in metal transport

Plant Physiol. Vol. 126, 2001

or its regulation. Similar potential metal-binding do-
mains have also been found in efflux proteins belong-
ing to the CDF family (Paulsen and Saier, 1997).
The most conserved portion of the ZIP family pro-
teins occurs in TM domain IV, which is predicted to
form an amphipathic helix with a fully conserved His
residue. This His residue, along with an adjacent
polar residue, may comprise part of an intramembra-
neous heavy metal binding site that is part of the
transport pathway (Eng et al., 1998). Consistent with
this model, mutation of the conserved histidines or
adjacent polar/charged residues in TM domains IV
and V of IRT1 eliminated its transport function (Rog-
ers et al., 2000). It is interesting that residues impor-
tant in determining substrate specificity of IRT1 have
been mapped to the loop region between TM do-
mains II and III. This region is predicted to lie on the
surface of the membrane and could be the site of
initial substrate binding during the transport process.

Chromosome Map and Summary

The chromosome positions of all transporters iden-
tified here are shown in Figure 9. At this time, it is
unclear for most of these genes whether they provide
redundant or unique functions. There are many cases
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in which members of a gene family are clustered with
two or more closely linked genes. These gene clusters
likely arose from a small regional duplication of a
chromosome, originally producing two redundant
copies of the same gene. Some of these clusters con-
tain pairs of the most closely related genes (e.g.
CNGC-19 and CNGC-20, group IVA), whereas others
contain very distantly related homologs (e.g.
CNGC2, group III and IVB, respectively; Fig. 5). This
chromosomal view is of immediate practical signifi-
cance to researchers considering strategies to make
double and triple knockouts of selected genes.

Phylogenetic analyses of selected cation trans-
porter families have been synthesized and analyzed.
These analyses show the number of genes, the num-
ber and constellation of sub groups, as well as the
complexity of each of these gene families in the com-
pleted Arabidopsis genome. Furthermore, results
from each of the analyzed gene families are de-
scribed. The presented analyses should lead to test-
ing of hypotheses by the plant membrane transport
community that can be derived from the presented
phylogenetic relationships. For example, new sub-
groups within gene families could indicate special-
ized functions, as already demonstrated for the
SKOR and GORK outward-rectifying K" channels,
which occupy a special side branch in the K* channel
tree and are distinct in function from the related
inward-rectifying K* channels. Furthermore, dupli-
cated and/or closely related genes could indicate
partial redundancies that will be important for de-
signing reverse genetic analyses of cation transporter
functions. In addition, the presented analyses show a
number of annotation errors and problems with the
deposited genomic sequences. These problems are
common and are a source of confusion to research on
many gene families. The presented analyses and de-
positing of corrected annotations in public databases
will be helpful for enhancing the use of the Arabi-
dopsis genome sequence by many laboratories in the
community. Furthermore, as the number of se-
quences from other plant species become increas-
ingly available, evolutionary relationships among in-
dividual members in these gene families will emerge,
which will lead to hypotheses and experiments test-
ing whether related or unrelated functions are found
among different species.

To further assist in the functional genomic analysis
of transport genes in Arabidopsis and other plants,
the Web-accessible PlantsT database (http://plantst.
sdsc.edu) has been created. The initial release of the
database includes the alignments and chromosome

Figure 9. Chromosome positions of genes for selected cation trans-
port families. Genes were arranged on chromosomes according to
their locations in the genomic sequence (i.e. not the genetic map).
Each chromosome is identified by its number and shown three times
(black bar followed by two copies in gray). Each of the six gene
families is separately mapped with all members aligned in a single
column, as labeled at the top.
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locations of the families of transporters examined in
this paper. We are in the process of populating the
database with the complete set of transport proteins
in Arabidopsis, based on identifications of ho-
mologs to each protein family identified in the ten-
tative consensus system of Saier (http://www.
biology.ucsd.edu/~msaier/transport). The PlantsT
database will provide a curated, nonredundant
view of each protein based on information extracted
from the literature as well as additional information
contributed by the members of this project and the
plant membrane transport research community. In
particular, the database will include the protein and
nucleic acid sequence information, and sequence an-
notation from the research community, experimental
information about metal concentrations in mutant
lines, and additional functional information.

MATERIALS AND METHODS

Transporter families were generated using several meth-
ods and details for the analysis of each family are provided
in the figure legends. An overview is presented here. In-
clusion of sequences from the complete Arabidopsis ge-
nome in families was based on homology and the presence
of signature sequences. Blast searches (Altschul et al., 1997)
were performed using protein sequences of previously
characterized transporters. AGI gene codes for family
members were obtained from (http://www.biology.ucs-
d.edu/~ipaulsen/transport/), (http://www.cbs.umn.edu/
arabidopsis), and (http://www.mips.biochem.mpg.de/
proj/thal/db/index.html). Predicted protein sequences
were obtained from the MATDB and compared with trans-
lated cDNA and EST sequences from GenBank. For several
transporters, the protein sequence predicted from genomic
DNA sequence was determined to contain errors detected
by comparison with published cDNA sequences, EST se-
quences in GenBank, tentative consensus sequences from
The Institute for Genomic Research (http://www.tigr.org/
tdb/agi/), or unpublished cDNA sequence data. When
possible, confirmed sequences were used for phylogenetic
analysis. Multiple alignments were performed using Clust-
alW (Thompson et al., 1994) and ClustalX (Thompson et al.,
1997). Unrooted trees were prepared by the neighbor-
joining method using either Clustal, PHYLIP (Felsenstein,
1989), or Paup (Swofford, 1998), and 1,000 (or 10,000 for
CNGCs) bootstrap replicates were performed. Bold lines
on trees indicate protein sequences that were confirmed by
c¢DNA sequencing or EST consensus. Where possible, gene
names have been assigned to facilitate future efforts to
determine functions of family members and, in several
cases, conflicting gene names and numbers have been
resolved.
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